43 research outputs found

    Diagnostic and prognostic value of serum miR-9-5p and miR-128-3p levels in early-stage acute ischemic stroke

    Get PDF
    OBJECTIVES: To investigate the clinical utility of serum microRNA levels (miR-9-5p and miR-128-3p) in the diagnosis and prognosis of early-stage acute ischemic stroke (AIS). METHODS: We compared the differences in serum miR-9-5p and miR-128-3p levels between patients with AIS and healthy individuals (controls). The serum levels of miR-9-5p and miR-128-3p were quantified using quantitative real-time PCR, and the association of each miRNA with AIS was determined using receiver operator characteristic curve analysis. The predictive value of these indices in the diagnosis of early-stage AIS was evaluated in conjunction with that of computed tomography findings and neuron-specific enolase levels. The prognosis of patients with AIS was evaluated three months after their discharge from hospital using the modified Rankin scale, which classifies the prognosis as either favorable or poor. Logistic regression analysis was used to analyze the correlation between miR-9-5p and miR-128-3p levels and patient prognosis. RESULTS: The serum levels of miR-9-5p and miR-128-3p were upregulated in patients with AIS relative to those in healthy individuals. A pronounced correlation was identified between serum miR-9-5p and miR-128-3p levels and patient prognosis, with high levels of both miRNAs being associated with poor patient outcomes. CONCLUSION: Assessment of serum miR-9-5p and miR-128-3p levels is important for the early diagnosis and prognosis of AIS

    Scientific Computing with Diffractive Optical Neural Networks

    No full text
    Diffractive optical neural networks (DONNs) are emerging as high‐throughput and energy‐efficient hardware platforms to perform all‐optical machine learning (ML) in machine vision systems. However, the current demonstrated applications of DONNs are largely image classification tasks, which undermine the prospect of developing and utilizing such hardware for other ML applications. Herein, the deployment of an all‐optical reconfigurable DONNs system for scientific computing is demonstrated numerically and experimentally, including guiding two‐dimensional quantum material synthesis, predicting the properties of two‐dimensional quantum materials and small molecular cancer drugs, predicting the device response of nanopatterned integrated photonic power splitters, and the dynamic stabilization of an inverted pendulum with reinforcement learning. Despite a large variety of input data structures, a universal feature engineering approach is developed to convert categorical input features to images that can be processed in the DONNs system. The results open up new opportunities for employing DONNs systems for a broad range of ML applications

    Spatial Distribution Balance Analysis of Hospitals in Wuhan

    No full text
    The spatial distribution pattern of hospitals in Wuhan indicates a core in the central urban areas and a sparse distribution in the suburbs, particularly at the center of suburbs. This study aims to improve the gravity and Huff models to analyze healthcare accessibility and resources. Results indicate that healthcare accessibility in central urban areas is better than in the suburbs, where it increasingly worsens for the suburbs. A shortage of healthcare resources is observed in large-scale and high-class hospitals in central urban areas, whereas the resources of some hospitals in the suburbs are redundant. This study proposes the multi-criteria evaluation (MCE) analysis model for the location assessment in constructing new hospitals, which can effectively ameliorate healthcare accessibility in suburban areas. This study presents implications for the planning of urban healthcare facilities

    Inclusion Complex of Docetaxel with Sulfobutyl Ether β-Cyclodextrin: Preparation, In Vitro Cytotoxicity and In Vivo Safety

    No full text
    Docetaxel (DTX), as a first-line anti-tumor drug, has been studied for decades for its diverse bioactivities. However, DTX presents poor solubility in water, low bioavailability and serious toxic side effects which has hindered its application in the clinic. To address these problems, docetaxel-sulfobutyl ether-β-cyclodextrin inclusion complex (DTX-SBE-β-CD) was prepared successfully by saturated aqueous solution method. Sulfobutyl ether β-cyclodetrin (SBE-β-CD) is used as delivery material. For this study, the inclusion complex of docetaxel with sulfobutyl ether β-cyclodetrin (DTX-SBE-β-CD) was prepared and optimized its properties to enhance the cytotoxicity of cancer cells. A large number of physical characterization results showed that DTX-SBE-β-CD inclusion complex was successfully prepared by saturated aqueous solution method. DTX-SBE-β-CD inclusion complex was optimized by Central Composite Design. DTX-SBE-β-CD had an inhibitory effect on the in vitro determination of MCF-7 and HepG2 cells by MTT assay. Pharmacokinetic studies were carried out on male Sprague–Dawley rats by tail injection, including the distribution, metabolism and elimination of DTX-SBE-β-CD in vivo. In the experimental study of inhibition of cancer cells, DTX and DTX-SBE-β-CD showed apparent concentration-dependent inhibitory actions on tumor cells and the inhibition of DTX-SBE-β-CD group was more obvious

    Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review

    No full text
    As a sustainable, cost-effective and energy-efficient method, membranes are becoming a progressively vital technique to solve the problem of the scarcity of freshwater resources. With these critical advantages, carbon nanotubes (CNTs) have great potential for membrane desalination given their high aspect ratio, large surface area, high mechanical strength and chemical robustness. In recent years, the CNT membrane field has progressed enormously with applications in water desalination. The latest theoretical and experimental developments on the desalination of CNT membranes, including vertically aligned CNT (VACNT) membranes, composited CNT membranes, and their applications are timely and comprehensively reviewed in this manuscript. The mechanisms and effects of CNT membranes used in water desalination where they offer the advantages are also examined. Finally, a summary and outlook are further put forward on the scientific opportunities and major technological challenges in this field

    Modulation-Doped Multiple Quantum Wells of Aligned Single-Wall Carbon Nanotubes

    No full text
    Heterojunctions, quantum wells, and superlattices with precise doping profiles are behind today's electronic and photonic devices based on III–V compound semiconductors such as GaAs. Currently, there is considerable interest in constructing similar artificial 3D architectures with tailored electrical and optical properties by using van der Waals junctions of low-dimensional materials. In this study, the authors have fabricated a novel structure consisting of multiple thin (≈20 nm) layers of aligned single-wall carbon nanotubes with dopants inserted between the layers. This “modulation-doped” multiple-quantum-well structure acts as a terahertz polarizer with an ultra-broadband working frequency range (from ≈0.2 to ≈200 THz), a high extinction ratio (20 dB from ≈0.2 to 1 THz), and a low insertion loss (<2.5 dB from ≈0.2 to 200 THz). The individual carbon nanotube films—highly aligned, densely packed, and large (2 in. in diameter)—were produced using vacuum filtration and then stacked together in the presence of dopants. This simple, robust, and cost-effective method is applicable to the fabrication of a variety of devices relying on macroscopically 1D properties of aligned carbon nanotube assemblies
    corecore